PKM2 promotes reductive glutamine metabolism
نویسندگان
چکیده
منابع مشابه
Haploinsufficiency of SIRT1 Enhances Glutamine Metabolism and Promotes Cancer Development
SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, plays a vital role in the regulation of metabolism, stress responses, and genome stability. However, the role of SIRT1 in the multi-step process leading to transformation and/or tumorigenesis, as either a tumor suppressor or tumor promoter, is complex and may be dependent upon the context in which SIRT1 activity is altered,...
متن کاملReductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells.
Reductively metabolized glutamine is a major cellular carbon source for fatty acid synthesis during hypoxia or when mitochondrial respiration is impaired. Yet, a mechanistic understanding of what determines reductive metabolism is missing. Here we identify several cellular conditions where the α-ketoglutarate/citrate ratio is changed due to an altered acetyl-CoA to citrate conversion, and demon...
متن کاملMetformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism.
Metformin inhibits cancer cell proliferation, and epidemiology studies suggest an association with increased survival in patients with cancer taking metformin; however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. ...
متن کاملDual roles of PKM2 in cancer metabolism.
Cancer cells have distinct metabolism that highly depends on glycolysis instead of mitochondrial oxidative phosphorylation alone, known as aerobic glycolysis. Pyruvate kinase (PK), which catalyzes the final step of glycolysis, has emerged as a potential regulator of this metabolic phenotype. Expression of PK type M2 (PKM2) is increased and facilitates lactate production in cancer cells, which d...
متن کاملPKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation
Sepsis, severe sepsis and septic shock are the main cause of mortality in non-cardiac intensive care units. Immunometabolism has been linked to sepsis; however, the precise mechanism by which metabolic reprogramming regulates the inflammatory response is unclear. Here we show that aerobic glycolysis contributes to sepsis by modulating inflammasome activation in macrophages. PKM2-mediated glycol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Biology & Medicine
سال: 2018
ISSN: 2095-3941
DOI: 10.20892/j.issn.2095-3941.2018.0122